ACKNOWLEDGEMENTS
FUNDING FOR THE INTERNATIONAL FOOD POLICY STUDY YOUTH SURVEY WAS PROVIDED BY HEALTH CANADA, WITH ADDITIONAL SUPPORT FROM THE PUBLIC HEALTH AGENCY OF CANADA (PHAC), AND A CANADIAN INSTITUTES OF HEALTH RESEARCH (CIHR) PROJECT GRANT (PJT-162167). THE STUDY HAS NO AFFILIATIONS WITH THE FOOD INDUSTRY AND THERE ARE NO CONFLICTS OF INTERESTS TO DECLARE.

SUGGESTED CITATION
HAMMOND D, WHITE CM, RYNARD VL, VANDERLEE L. INTERNATIONAL FOOD POLICY STUDY: TECHNICAL REPORT – 2020 YOUTH SURVEY. UNIVERSITY OF WATERLOO. DECEMBER 2021. AVAILABLE AT WWW.FOODPOLICYSTUDY.COM/METHODS

CONTACT
DAVID HAMMOND PhD
SCHOOL OF PUBLIC HEALTH SCIENCES
UNIVERSITY OF WATERLOO
WATERLOO, ON CANADA N2L 3G1
DHAMMOND@UWATERLOO.CA
WWW.DAVIDHAMMOND.CA
IFPS RESEARCH TEAM

CANADA
David Hammond, School of Public Health Sciences, University of Waterloo (PI)
Lana Vanderlee, School of Nutrition, Université Laval
Rachel Acton, School of Public Health Sciences, University of Waterloo
Joel Dubin, Department of Statistics & Actuarial Science; School of Public Health Sciences, University of Waterloo
Samantha Goodman, School of Public Health Sciences, University of Waterloo
Sharon Kirkpatrick, School of Public Health Sciences, University of Waterloo
Tarra Penney, School of Global Health, York University
Monique Potvin-Kent, School of Epidemiology and Public Health, University of Ottawa
Vicki Rynard, School of Public Health Sciences, University of Waterloo
Christine White, School of Public Health Sciences, University of Waterloo

AUSTRALIA
Gary Sacks, Collaborating Centre for Obesity Prevention, Deakin University
Adrian Cameron, Collaborating Centre for Obesity Prevention, Deakin University

CHILE
Marcela Reyes, Institute of Nutrition and Food Technology, University of Chile

MEXICO
Simon Barquera, Instituto Nacional de Salud Pública, Mexico
Alejandra Jáuregui de la Mota, Instituto de Salud Pública, Mexico

UNITED KINGDOM
Martin White, Centre for Diet and Activity Research, University of Cambridge
Jean Adams, Centre for Diet and Activity Research, University of Cambridge

UNITED STATES
James Thrasher, Arnold School of Public Health, University of South Carolina
Christina Roberto, Perelman School of Medicine, University of Pennsylvania

FUNDING AND POLICY ON INDUSTRY SUPPORT
Funding for the International Food Policy Study was provided by Health Canada, with additional support from the Public Health Agency of Canada (PHAC), and a Canadian Institutes of Health Research (CIHR) Project Grant (PJT-162167). The study has no affiliations with the food industry and the Principal Investigator (Hammond) has no conflicts of interests to declare. It is a general policy of the project that authors should not accept industry funding for any work related to this project and should declare all potential conflicts of interest.
METHODS

The primary objective of the International Food Policy Study (IFPS) is to evaluate the impact of national-level food policies. The IFPS project consists of repeat cross-sectional surveys conducted annually with adults and youth to examine dietary patterns and policy-relevant behaviours across countries. Adult surveys are conducted in five countries (Australia, Canada, Mexico, the United Kingdom (UK), and the United States (US)), whereas youth surveys are conducted in six countries (Australia, Canada, Chile, Mexico, the UK, and the US). The study provides a quasi-experimental design for evaluating federal-level policies by providing both ‘within’ and ‘between-country’ measures over time. The current report describes methodology for the IFPS Youth Surveys; Technical Reports for the IFPS Adult Surveys are available on the project website (www.foodpolicystudy.com/methods).

SAMPLE & RECRUITMENT

Online surveys were conducted with youth in 2020 with a total of 12,031 respondents from six countries: Australia (n=1,595), Canada (n=3,895), Chile (n=1,615) Mexico (n=1,823), the UK (n=1,521), and the US (n=1,582). The first wave of the IFPS youth survey was conducted in November-December 2019, and second wave was conducted in November-December 2020.

The sample was recruited through parents/guardians enrolled in the Nielsen Consumer Insights Global Panel, which maintains and/or has partner panels in each country. The panels are recruited using both probability and non-probability sampling methods. The Nielsen panel provides standardized recruitment sampling across countries. For the current study, Nielsen contacted adults from the online panels in each country, using email invitations with unique survey access links. Adult panelists were screened to identify whether they had any children aged 10 to 17 living in their household. Parents/guardians with a potentially eligible child were provided information about the study, and asked for permission for their child to participate. Only one child per household was invited to participate. The child was subsequently screened directly to confirm eligibility based on age and sex. Children aged 10 to 17 years were eligible to participate, with quotas for age and sex in the UK and US. Eligible children were provided study information and asked to provide assent before beginning the survey.

In the UK and US, quotas for age and sex were applied to facilitate recruitment of a diverse sample for males and females in two age groups: 10-13 and 14-17 years of age. These quotas were not applied in other countries due to more limited panel sizes. Sample targets were used to recruit English- and French- speaking respondents in Canada, and English- and Spanish- speaking respondents in USA proportional to the population distribution.

The child’s parent/guardian (adult panelist) received remuneration in accordance with their panel’s usual incentive structure, which includes points-based or monetary rewards that can be redeemed for e-gift cards, catalog items, cash, donations and/or chances to win monthly prizes. These incentives have been shown to increase response rates and decrease response bias in sub-groups under-represented in surveys, including disadvantaged subgroups. Remuneration was provided to the parents/guardians, rather than the children because the children did not have their own panelist accounts, and Nielsen and their partner panels did not have contact information for the children.

All data collection was conducted online, which provides several advantages, including the use of product images to assess beverage consumption and in experimental tasks, and the use of ‘skip patterns’ and
questionnaire routing to account for differential patterns of use. Online surveys can also reduce social desirability bias, compared to in-person and phone surveys, by providing greater anonymity for sensitive topics such as weight bias and stigma.4,5

Online survey methods are well-established, and are emerging as the preferred mode for population-based surveys given declining response rates from random digit dialled (RDD) phone surveys.6,7,8,9 Until recently, online surveys were constrained by limited internet penetration. However, internet penetration now exceeds “landlines”, even among lower socioeconomic groups: in Australia, Canada, the UK and the US, internet usage in the population approximates 90% or more.10,11,12,13 Internet penetration is lower in Mexico, but still widespread with approximately 70% of Mexicans using the internet.14

Respondents were permitted to complete the survey on desktop or laptop computers, or mobile devices including smartphones or tablets. Some survey measures rendered differently on devices with smaller screen sizes such as smartphones. Measures involving scales from 0 to 10 displayed the scale horizontally on desktops and laptops, and vertically on smartphones and tablets. Overall, half (49.5%) of respondents completed the survey on a smartphone (Mexico=60.1%; Canada=50.0%; Australia=43.4%; Chile=55.5%; UK=51.5%; US=33.8%).

PARTICIPATION RATES
Table 1 indicates the number of youth survey invitations sent in each country. The youth survey was ‘closed’ when target quotas were met.

<table>
<thead>
<tr>
<th>Disposition</th>
<th>Total</th>
<th>Australia</th>
<th>Canada</th>
<th>Chile</th>
<th>Mexico</th>
<th>United Kingdom</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invitations sent</td>
<td>353,443</td>
<td>31,540</td>
<td>68,008</td>
<td>71,189</td>
<td>54,274</td>
<td>15,216</td>
<td>112,516</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Did not access survey</td>
<td>337,928</td>
<td>95.6</td>
<td>29,527</td>
<td>93.6</td>
<td>63,027</td>
<td>92.7</td>
<td>69,645</td>
</tr>
<tr>
<td>Total accessed survey</td>
<td>15,515</td>
<td>4.4</td>
<td>2,013</td>
<td>6.4</td>
<td>4,981</td>
<td>7.3</td>
<td>2,244</td>
</tr>
<tr>
<td>Accessed survey</td>
<td>1,306</td>
<td>0.4</td>
<td>139</td>
<td>0.4</td>
<td>539</td>
<td>0.8</td>
<td>223</td>
</tr>
<tr>
<td>link, unknown eligibilitya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ineligibleb</td>
<td>364</td>
<td>0.1</td>
<td>65</td>
<td>0.2</td>
<td>60</td>
<td>0.1</td>
<td>54</td>
</tr>
<tr>
<td>Eligible, no consent</td>
<td>147</td>
<td>0.0</td>
<td>19</td>
<td>0.1</td>
<td>52</td>
<td>0.1</td>
<td>18</td>
</tr>
<tr>
<td>Eligible, partialc</td>
<td>1,209</td>
<td>0.3</td>
<td>140</td>
<td>0.4</td>
<td>330</td>
<td>0.5</td>
<td>299</td>
</tr>
<tr>
<td>Completes</td>
<td>12,489</td>
<td>3.5</td>
<td>1,650</td>
<td>5.2</td>
<td>4,000</td>
<td>5.9</td>
<td>1,650</td>
</tr>
<tr>
<td>Excluded, data qualityd</td>
<td>458</td>
<td>0.1</td>
<td>55</td>
<td>0.2</td>
<td>105</td>
<td>0.2</td>
<td>35</td>
</tr>
<tr>
<td>No / ineligible region</td>
<td>19</td>
<td>0.0</td>
<td>1</td>
<td>0.0</td>
<td>4</td>
<td>0.0</td>
<td>10</td>
</tr>
<tr>
<td>Failed data quality check</td>
<td>320</td>
<td>0.1</td>
<td>47</td>
<td>0.1</td>
<td>67</td>
<td>0.1</td>
<td>16</td>
</tr>
<tr>
<td>Speeding</td>
<td>86</td>
<td>0.0</td>
<td>4</td>
<td>0.0</td>
<td>32</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>Other issue</td>
<td>33</td>
<td>0.0</td>
<td>3</td>
<td>0.0</td>
<td>2</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>Complete, retained</td>
<td>12,031</td>
<td>3.4</td>
<td>1,595</td>
<td>5.1</td>
<td>3,895</td>
<td>5.7</td>
<td>1,615</td>
</tr>
</tbody>
</table>

a Parent/guardian did not provide consent, or respondent closed the survey link before the age question (in all countries) and sex screening question (in the US and UK) were completed and eligibility determined
b Respondent screened ineligible due to ineligible age (<10 or >17)
c Respondent quit the survey before finishing
d Respondent failed to state their region or stated their region as in another country or an ineligible region (i.e., a territory in Canada), and/or failed to answer or incorrectly answered the data quality check question, “Which of these foods is a fruit?”, and/or completed the survey in less than 10 minutes, indicating “speeding” and presumably lack of attention, and/or provided unrelated responses to at least two open-ended questions, or nonsensical typing and/or unrelated responses in all three open-ended questions (two in Chile/Mexico).
For commercial panels that include non-probability based sample, the American Association for Public Opinion Research (AAPOR) recommends reporting the ‘participation rate’, also referred to a ‘completion rate’. The participation rate is defined as “the number of respondents who have provided a usable response divided by the total number of initial personal invitations requesting participation”. Participation rates are largely a product of sample management and the amount of sample that is ‘released’ prior to reaching target quotas.

Participation rates for eligible participants were calculated for the current study as follows:

\[
\text{Participation Rate} = \frac{\text{Completes}}{\text{Total Eligible Invites}} \\
\text{Total Eligible Invites} = \text{Unknown Eligible} - [\text{Unknown Eligible} \times (\text{Ineligible} / (\text{Known Eligible} + \text{Unknown Eligible} + \text{Ineligible}))] + \text{Eligible, no consent} + \text{Completes} \\
\text{Unknown Eligible} = \text{Did not access survey} + \text{Accessed survey, unknown eligibility}
\]

The total participation rate was 3.5%. As shown in Table 1, 353,443 invitations were sent to panelists; 15,515 potential respondents (4.4%) accessed the survey link; and 12,031 respondents (3.4%) completed the IFPS survey and were retained in the sample.

The cooperation rate represents “the proportion of all cases interviewed of all eligible units ever contacted”. Across all countries, the cooperation rate was 79.6%, which was calculated based on AAPOR Cooperation Rate #2, as the percentage of respondents who completed the survey (12,031) of those eligible who accessed the survey link (15,118).

SURVEY CONTENT AND DEVELOPMENT

The study assessed five primary policy domains: school nutrition environments, sugary drink policies, food packaging and labelling, food marketing, and food guide/dietary recommendations. The study has a particular focus on consumer perceptions and behaviours, including dietary patterns, beverage intake, sources of food purchases, food preparation, weight loss behaviour, weight perceptions, sugary drink perceptions, nutrition knowledge, and food security.

Where possible, questionnaire items were drawn or adapted from national surveys and the adult IFPS survey or selected based on previous research. Several new measures were also developed by the research team. Cognitive interviewing was previously conducted with 50 young adults aged 16-30 years in Canada to evaluate the adult version of the beverage frequency measures. Cognitive interviewing was also conducted with 8 children aged 10-13 years in Canada to evaluate and improve several new items in the youth survey, including measures on food sources, beverage intake, food security, and food marketing.

Surveys were conducted in English in Australia and the UK; Spanish in Mexico and Chile; English or French in Canada; and English or Spanish in the US (based on the panelist’s known language preference). The youth questionnaire was professionally translated into French survey by Sirois French Translation Services (Montreal, Canada), and into Spanish by Communications Parisella, etc. Inc (Montreal, Canada). Some measures were incorporated from the adult IFPS survey which was previously translated into French by Communications Parisella, etc. Inc, and Spanish by Benton & Associates (Mexico City, Mexico). Translations were reviewed by bilingual research team members who were native in each language and content experts, confirming nutrition-related terminology and adapting country-specific content where necessary, while aiming to maximize
comparability across countries. Surveys were adapted for country-specific terminology (e.g., “soda or pop” in Canada vs. “fizzy drinks” in the UK). Survey teams in each country also reviewed beverage and food lists and images to ensure that the measures were representative of the products available in each market.

The median youth survey completion time across countries was 25 minutes (see Table 2 for time, by country).

TABLE 2: Median youth survey time, by country, 2020

<table>
<thead>
<tr>
<th>Country</th>
<th>Median survey time minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>24</td>
</tr>
<tr>
<td>Canada – overall</td>
<td>24</td>
</tr>
<tr>
<td>Canada – English</td>
<td>23</td>
</tr>
<tr>
<td>Canada – French</td>
<td>25</td>
</tr>
<tr>
<td>Chile</td>
<td>27</td>
</tr>
<tr>
<td>Mexico</td>
<td>30</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>21</td>
</tr>
<tr>
<td>United States - overall</td>
<td>24</td>
</tr>
<tr>
<td>United States – English</td>
<td>24</td>
</tr>
<tr>
<td>United States – Spanish</td>
<td>26</td>
</tr>
<tr>
<td>OVERALL</td>
<td>25</td>
</tr>
</tbody>
</table>

DATA INTEGRITY

As a data integrity check, approximate two-thirds through the survey, respondents were asked “Which of these foods is a fruit”, with a list of five food items (bread, carrot, egg, apple, or milk). Respondents who failed to select the correct answer (apple) were excluded from the analytic sample.

Respondents who completed the survey in less than 10 minutes were considered “speeders”. The median survey completion time was substantially longer at 25 minutes, thus those who completed in less than 10 minutes would have presumably lacked attention when responding to the survey questions, and consequently were excluded from the analytic sample.

The surveys contained a few open-ended measures which were also reviewed during data cleaning and problematic responses flagged. These measures included city, beverage brand recall, and food guide messages (except in Chile and Mexico). Respondents were excluded from the analytic sample if their response content was unrelated to the question in at least two of the three variables, or if their response included nonsensical typing and/or unrelated content in all three variables (two in Chile and Mexico).

ETHICS CLEARANCE

The study was reviewed by and received ethics clearance through a University of Waterloo Research Ethics Committee (ORE # 41477).

SURVEY WEIGHTS

Post-stratification sample weights were constructed for each country separately based on known population totals by age, sex, region, and ethnicity (except in Canada). Respondents were classified into sex-by-age-by-region groups, and ethnicity-by-region groups (except in Canada). Correspondingly grouped population count and proportion estimates (sex, age, region populations) from each country were obtained.\(^{18,19,20,21,22,23}\)
Population data on ethnicity from each country were also obtained.20,23,24,25,27,28 Separately by country, a raking algorithm was applied to compute weights that are calibrated to these groupings. The SAS macro “RAKE_AND_TRIM_G4_V5” was used, with trimming to 5 (rescaled) if necessary.29,30 Finally, the weights were rescaled to sum to the sample size in each country. Note: the approach to weighting ethnicity in the United States was enhanced in 2020, as described below.

The tables below indicate the age, sex at birth, region, and ethnicity categories used for weighting by country.

AUSTRALIA

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-13 years</td>
<td>1) Male</td>
<td>1) New South Wales</td>
<td>1) Speak language other than English in the home</td>
</tr>
<tr>
<td>2) 14-17 years</td>
<td>2) Female</td>
<td>2) Victoria</td>
<td>2) Speak English only in the home</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Queensland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Western Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) South Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6) Tasmania/Australian Capital Territory/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Territory</td>
<td></td>
</tr>
</tbody>
</table>

Note: Respondents from Tasmania, Australian Capital Territory and Northern Territory were collapsed into one category due to small sample sizes. This means that the Australian data are adjusted to the age, sex and ethnicity of the five larger states but not to Tasmania, Australian Capital Territory, nor Northern Territory individually. Additionally, ethnicity was not used in the 2020 weights for the Tasmania/Australian Capital Territory/Northern Territory group due to small numbers.

The survey weights for Australia ranged from 0.54 to 1.74.

CANADA

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-11 years</td>
<td>1) Male</td>
<td>1) Atlantic Provinces</td>
</tr>
<tr>
<td>2) 12-13 years</td>
<td>2) Female</td>
<td>2) Quebec</td>
</tr>
<tr>
<td>3) 14-15 years</td>
<td></td>
<td>3) Ontario</td>
</tr>
<tr>
<td>4) 16-17 years</td>
<td></td>
<td>4) Prairie Provinces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) British Columbia</td>
</tr>
</tbody>
</table>

Note: Canada had a sample size that was more than double that of the other countries which allowed for a finer age breakdown. Ethnicity was not incorporated in the development of weights for Canada due to inconsistent collection methods/response options used in national surveys/census.

The survey weights in Canada ranged from 0.60 to 1.67.

CHILE

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-13 years</td>
<td>1) Male</td>
<td>1) North region</td>
<td>1) Indigenous</td>
</tr>
<tr>
<td>2) 14-17 years</td>
<td>2) Female</td>
<td>2) Centre region</td>
<td>2) Not Indigenous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) South region</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Santiago region</td>
<td></td>
</tr>
</tbody>
</table>

The survey weights for Chile ranged from 0.58 to 2.34.
MEXICO

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-13 years</td>
<td>1) Male</td>
<td>1) North region</td>
<td>1) Indigenous</td>
</tr>
<tr>
<td>2) 14-17 years</td>
<td>2) Female</td>
<td>2) South region</td>
<td>2) Not Indigenous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Centre region</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Mexico City region</td>
<td></td>
</tr>
</tbody>
</table>

Note: In 2019, the Mexico population data used to create the weights was provided in 5-year age group segments with 10-14 years being one of the groups, so the age groups used for weights were adjusted from 10-13 years (used in other countries) to 10-14 years to align with the data. In 2020, the 10-13 and 14-17 age groups were able to be used in Mexico.

The survey weights for Mexico ranged from 0.14 to 4.55.

UNITED KINGDOM

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-13 years</td>
<td>1) Male</td>
<td>1) North East</td>
<td>1) White alone</td>
</tr>
<tr>
<td>2) 14-17 years</td>
<td>2) Female</td>
<td>2) North West</td>
<td>2) Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Yorkshire and the Humber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) East Midlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) West Midlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6) East of England</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7) London</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8) South East</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9) South West</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10) Scotland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11) Wales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12) Northern Ireland</td>
<td></td>
</tr>
</tbody>
</table>

Note: North East, South West, Scotland, Wales, and Northern Ireland were collapsed together and East Midlands and East of England were collapsed together for the ethnicity-by-region groups due to low numbers in the ‘Other’ ethnicity cells.

The survey weights for the UK ranged from 0.64 to 3.22.

UNITED STATES

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Sex at birth</th>
<th>Regions</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 10-13 years</td>
<td>1) Male</td>
<td>1) New England</td>
<td>1) White alone and not Hispanic</td>
</tr>
<tr>
<td>2) 14-17 years</td>
<td>2) Female</td>
<td>2) Middle Atlantic</td>
<td>2) Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) East North Central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) West North Central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) South Atlantic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6) East South Central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7) West South Central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8) Mountain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9) Pacific</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ethnicity was collapsed in New England due to small sample sizes.

The survey weights for the US ranged from 0.31 to 4.86.

In the 2020 survey wave, the method previously used to construct weights for US respondents was revised. Papers completed before 2022 using data from the 2019 youth survey employed weights for US respondents where ethnicity was categorized as ‘White alone’ (regardless of Hispanic status) or ‘Other’. In the 2020 wave, ethnicity was instead categorized as ‘White alone and not Hispanic’ or ‘Other’ to better align with census estimates. Revised weights were also constructed retroactively for the 2019 US dataset; any new papers using the 2019 US data should use these revised weights.
SAMPLE CHARACTERISTICS

The demographic characteristics of the youth sample, by country, are shown in Table 3.

<table>
<thead>
<tr>
<th>Disposition</th>
<th>Unweighted % (n)</th>
<th>Weighted % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>52.9% (843)</td>
<td>51.3% (819)</td>
<td>50.2% (1,954)</td>
<td>50.9% (1,984)</td>
<td>57.5% (928)</td>
<td>51.1% (825)</td>
<td>55.6% (1014)</td>
<td>50.7% (925)</td>
<td>49.4% (751)</td>
<td>51.3% (780)</td>
<td>53.0% (838)</td>
<td>51.0% (807)</td>
</tr>
<tr>
<td>Female</td>
<td>47.1% (752)</td>
<td>48.7% (776)</td>
<td>49.8% (1,941)</td>
<td>49.1% (1,911)</td>
<td>42.5% (687)</td>
<td>48.9% (790)</td>
<td>44.4% (809)</td>
<td>49.3% (898)</td>
<td>50.6% (770)</td>
<td>48.7% (741)</td>
<td>47.0% (744)</td>
<td>49.0% (775)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>(mean; SD)</td>
<td>13.5 years</td>
<td>13.4 years</td>
<td>13.6 years</td>
<td>13.5 years</td>
<td>13.3 years</td>
<td>13.5 years</td>
<td>13.5 years</td>
<td>13.4 years</td>
<td>13.7 years</td>
<td>13.5 years</td>
<td>13.5 years</td>
<td>13.5 years</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Majority</td>
<td>76.7% (1,223)</td>
<td>73.9% (1,178)</td>
<td>70.5% (2,745)</td>
<td>69.2% (2,697)</td>
<td>87.2% (1,408)</td>
<td>83.5% (1,348)</td>
<td>85.4% (1,557)</td>
<td>77.9% (1,420)</td>
<td>85.4% (1,299)</td>
<td>78.4% (1,240)</td>
<td>82.1% (1,248)</td>
<td>78.4% (1,240)</td>
</tr>
<tr>
<td>Minority</td>
<td>22.9% (366)</td>
<td>25.7% (411)</td>
<td>28.0% (1,090)</td>
<td>29.2% (1,136)</td>
<td>10.5% (169)</td>
<td>14.5% (233)</td>
<td>12.1% (221)</td>
<td>19.5% (355)</td>
<td>13.7% (209)</td>
<td>17.0% (259)</td>
<td>17.0% (259)</td>
<td>21.5% (340)</td>
</tr>
<tr>
<td>Not stated</td>
<td>0.4% (6)</td>
<td>0.4% (6)</td>
<td>1.5% (60)</td>
<td>1.6% (62)</td>
<td>2.4% (38)</td>
<td>2.1% (34)</td>
<td>2.5% (45)</td>
<td>2.6% (48)</td>
<td>0.9% (13)</td>
<td>0.9% (13)</td>
<td>0.1% (2)</td>
<td>0.3% (5)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
</tr>
<tr>
<td>Severe thinness or thinness</td>
<td>3.6% (57)</td>
<td>3.7% (60)</td>
<td>3.8% (147)</td>
<td>3.9% (152)</td>
<td>1.2% (20)</td>
<td>1.2% (19)</td>
<td>1.3% (23)</td>
<td>1.2% (23)</td>
<td>3.2% (48)</td>
<td>3.3% (50)</td>
<td>2.8% (44)</td>
<td>3.0% (47)</td>
</tr>
<tr>
<td>Normal</td>
<td>40.9% (652)</td>
<td>41.3% (659)</td>
<td>50.6% (1,971)</td>
<td>49.9% (1,945)</td>
<td>35.6% (575)</td>
<td>37.7% (608)</td>
<td>40.7% (742)</td>
<td>40.8% (744)</td>
<td>35.7% (543)</td>
<td>34.4% (523)</td>
<td>46.0% (727)</td>
<td>45.0% (712)</td>
</tr>
<tr>
<td>Overweight</td>
<td>15.8% (252)</td>
<td>15.6% (249)</td>
<td>15.1% (587)</td>
<td>15.2% (594)</td>
<td>18.8% (304)</td>
<td>18.4% (298)</td>
<td>23.6% (430)</td>
<td>22.2% (406)</td>
<td>12.2% (186)</td>
<td>12.3% (187)</td>
<td>20.4% (323)</td>
<td>19.5% (309)</td>
</tr>
<tr>
<td>Obesity</td>
<td>9.0% (143)</td>
<td>8.6% (136)</td>
<td>8.4% (329)</td>
<td>8.6% (334)</td>
<td>9.0% (145)</td>
<td>8.2% (133)</td>
<td>10.2% (186)</td>
<td>10.2% (186)</td>
<td>6.2% (95)</td>
<td>6.6% (101)</td>
<td>6.6% (101)</td>
<td>12.5% (198)</td>
</tr>
<tr>
<td>Missing – not stated</td>
<td>27.8% (443)</td>
<td>27.9% (444)</td>
<td>20.8% (812)</td>
<td>21.1% (822)</td>
<td>29.3% (473)</td>
<td>28.5% (460)</td>
<td>19.5% (355)</td>
<td>20.3% (370)</td>
<td>41.4% (629)</td>
<td>42.1% (641)</td>
<td>12.1% (192)</td>
<td>14.7% (233)</td>
</tr>
<tr>
<td>Missing – extreme values</td>
<td>3.0% (48)</td>
<td>2.9% (47)</td>
<td>1.3% (49)</td>
<td>1.3% (49)</td>
<td>6.1% (98)</td>
<td>6.0% (97)</td>
<td>4.8% (87)</td>
<td>5.2% (95)</td>
<td>1.3% (20)</td>
<td>1.3% (20)</td>
<td>5.5% (87)</td>
<td>5.2% (83)</td>
</tr>
<tr>
<td>Perceived Income Adequacy</td>
<td></td>
</tr>
<tr>
<td>Not enough money</td>
<td>4.0% (64)</td>
<td>3.8% (61)</td>
<td>2.5% (96)</td>
<td>2.5% (97)</td>
<td>5.2% (84)</td>
<td>5.5% (89)</td>
<td>4.6% (83)</td>
<td>5.4% (99)</td>
<td>3.8% (58)</td>
<td>4.0% (61)</td>
<td>3.2% (50)</td>
<td>4.1% (66)</td>
</tr>
<tr>
<td>Barely enough money</td>
<td>15.9% (254)</td>
<td>15.7% (250)</td>
<td>15.2% (591)</td>
<td>15.4% (598)</td>
<td>26.6% (429)</td>
<td>27.2% (439)</td>
<td>29.5% (537)</td>
<td>32.2% (588)</td>
<td>18.7% (285)</td>
<td>18.6% (284)</td>
<td>15.2% (240)</td>
<td>18.6% (294)</td>
</tr>
<tr>
<td>Enough money</td>
<td>63.6% (1,015)</td>
<td>64.0% (1,021)</td>
<td>63.9% (2,490)</td>
<td>63.4% (2,471)</td>
<td>61.7% (996)</td>
<td>61.1% (986)</td>
<td>59.5% (1,084)</td>
<td>57.1% (1,042)</td>
<td>64.1% (975)</td>
<td>63.6% (968)</td>
<td>61.9% (979)</td>
<td>59.1% (935)</td>
</tr>
<tr>
<td>More than enough money</td>
<td>15.3% (244)</td>
<td>15.3% (245)</td>
<td>16.9% (657)</td>
<td>17.0% (664)</td>
<td>5.2% (84)</td>
<td>5.1% (83)</td>
<td>5.8% (106)</td>
<td>4.5% (82)</td>
<td>12.2% (185)</td>
<td>12.6% (191)</td>
<td>18.8% (298)</td>
<td>17.3% (273)</td>
</tr>
<tr>
<td>Not stated</td>
<td>1.1% (18)</td>
<td>1.2% (18)</td>
<td>1.6% (61)</td>
<td>1.7% (65)</td>
<td>1.4% (22)</td>
<td>1.2% (18)</td>
<td>0.7% (13)</td>
<td>0.7% (12)</td>
<td>1.2% (18)</td>
<td>1.2% (17)</td>
<td>0.9% (15)</td>
<td>0.9% (15)</td>
</tr>
</tbody>
</table>
COMPARISONS WITH NATIONAL BENCHMARK SURVEYS

Australia

Table 4 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with Australian estimates from the Australian Census of Population and Housing conducted in August 2016 and the National Health Survey collected in 2017-2018.

TABLE 4: Prevalence estimates for ethnicity and BMI in Australia

<table>
<thead>
<tr>
<th>Table 4a. Ethnicity</th>
<th>Census of Population and Housing 2016, ages 10-17 a, b</th>
<th>IFPS Youth 2020, ages 10-17 (n=1,595)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Only speaks English at home</td>
<td>78.7</td>
<td>82.8</td>
</tr>
<tr>
<td>Speaks a language besides English at home</td>
<td>16.5</td>
<td>16.7</td>
</tr>
<tr>
<td>Not stated</td>
<td>4.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>

b Excludes respondents from ‘Other Territories’.

<table>
<thead>
<tr>
<th>Table 4b. BMI</th>
<th>National Health Survey, age 5-17, 2017-2018, directly measured b</th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>24.9 c</td>
<td>34.9 of those with valid BMI (n=1,104)</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>24.2 of the entire sample, including those with missing/not stated BMI (n=1,595)</td>
</tr>
</tbody>
</table>

c A total of 43.9% of respondents aged 2-17 did not have their height, weight or both measured. For these respondents, imputation was used to obtain height, weight and BMI scores.
Canada

Table 5 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with Canadian estimates from the Canadian Community Health Survey (CCHS) conducted in 2008, 2015 and 2019.

TABLE 5: Prevalence estimates for ethnicity and BMI in Canada

<table>
<thead>
<tr>
<th>Table 5a. Ethnicity</th>
<th>CCHS 2015, age 12+ a</th>
<th>IFPS Youth 2020, ages 10-17 (n=3,895)</th>
<th>Weighted %</th>
</tr>
</thead>
<tbody>
<tr>
<td>White only</td>
<td>77.0</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>Chinese only b</td>
<td>3.3</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>South Asian only</td>
<td>3.4</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Black only</td>
<td>2.0</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Indigenous inclusive c</td>
<td>4.7</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Mixed/other/not stated/missing</td>
<td>9.6</td>
<td>9.6</td>
<td></td>
</tr>
</tbody>
</table>

b IFPS estimate includes ‘East/Southeast Asian (Chinese, Korean, Japanese, Taiwanese descent; Filipino, Vietnamese, Cambodian, Thai, Indonesian, other Southeast Asian descent)’.

c IFPS estimate includes respondents who selected ‘Indigenous (First Nations, Metis, Inuit descent)’ alone, or in combination with other race categories.

<table>
<thead>
<tr>
<th>Table 5b. BMI</th>
<th>CCHS 2008, age 12-17, directly measured d</th>
<th>CCHS 2019, age 12-17 adjusted self-report e</th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
<th>Weighted %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overweight or obese</td>
<td>28.8</td>
<td>24.5 f</td>
<td>30.7 of those with valid BMI (n=3,024)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>23.8 of the entire sample, including those with missing/not stated BMI (n=3,895)</td>
<td></td>
</tr>
</tbody>
</table>

d Statistics Canada. Table 13-10-0455-01 Measured youth body mass index (BMI). DOI: https://doi.org/10.25318/1310045501-eng. Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310045501

e Statistics Canada. Table 13-10-0096-21 Body mass index, overweight or obese, self reported, youth (12 to 17 years old). DOI: https://doi.org/10.25318/1310009601-eng. Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009621

f Non-responses were removed from the CCHS self-reported calculation. CCHS estimates were calculated excluding non-response categories ("refusal", "don’t know", and "not stated") in the denominator.
Chile
Table 6 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with Chilean estimates from the census conducted in 2017, and the Mapa Nutricional Junaeb conducted in 2020.

TABLE 6: Prevalence estimates for ethnicity and BMI in Chile

<table>
<thead>
<tr>
<th>Table 6a. Ethnicity</th>
<th>Censos 2017, ages 10-17<sup>a</sup></th>
<th>IFPS Youth 2020, ages 10-17 (n=1,615)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Indigenous</td>
<td>14.3</td>
<td>14.5</td>
</tr>
<tr>
<td>Not indigenous/not stated</td>
<td>85.7</td>
<td>85.5</td>
</tr>
</tbody>
</table>

^a Instituto Nacional de Estadísticas. Censo de Población y Vivienda, 2017. Available at: https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda.

<table>
<thead>
<tr>
<th>Table 6b. BMI</th>
<th>JUNAEB 2020, ages 14-15, directly measured<sup>b</sup></th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>47.8</td>
<td>40.7 of those with valid BMI (n=1,058)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.7 of the entire sample, including those with missing/not stated BMI (n=1,615)</td>
</tr>
</tbody>
</table>

Mexico

Table 7 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with Mexican estimates from the Instituto Nacional de Estadística y Geografía (INEGI) collected in 2020, and ENSANUT collected in 2020.

TABLE 7: Prevalence estimates for ethnicity and BMI in Mexico

<table>
<thead>
<tr>
<th>Table 7a. Ethnicity</th>
<th>INEGI 2020, age 3+</th>
<th>IFPS Youth 2020, ages 10-17 (n=1,823)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Indigenous</td>
<td>19.4</td>
<td>19.5</td>
</tr>
<tr>
<td>Not indigenous/not stated</td>
<td>80.6</td>
<td>80.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7b. BMI</th>
<th>ENSANUT 2020, ages 12-19, directly measured</th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>43.8</td>
<td>43.5 of those with valid BMI (n=1,358)</td>
</tr>
<tr>
<td>--</td>
<td>32.4 of the entire sample, including those with missing/not stated BMI (n=1,823)</td>
<td></td>
</tr>
</tbody>
</table>

United Kingdom

Table 8 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with British estimates from the UK Census, Scotland Census and Northern Ireland Census each collected in 2011, as well as the Health Survey for England in 2018/2019.

TABLE 8: Prevalence estimates for ethnicity and BMI in the United Kingdom

<table>
<thead>
<tr>
<th>Table 8a. Ethnicity</th>
<th>UK Census 2011, ages 10-17</th>
<th></th>
<th>IFPS Youth 2020, ages 10-17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
<td>(n=1,521)</td>
</tr>
<tr>
<td>White (including Gypsy/Traveller/Irish Traveller)</td>
<td>83.3</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td>Mixed/Multiple Ethnic Groups</td>
<td>3.7</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Asian/Asian British</td>
<td>8.0</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Black/African/Caribbean/Black British</td>
<td>4.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Other Ethnic Group</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td>--</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8b. BMI</th>
<th>Health Survey for England 2018/19, ages 11-12, directly measured</th>
<th>Health Survey for England 2018/19, ages 13-15, directly measured</th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>36.9</td>
<td>36.4</td>
<td>33.5 of those with valid BMI (n=860)</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
<td>19.0 of the entire sample, including those with missing/not stated BMI (n=1,521)</td>
</tr>
</tbody>
</table>
United States

Table 9 compares weighted estimates of ethnicity and BMI from the 2020 IFPS Youth Survey with American estimates from the United States Census conducted in 2019 and the Youth Risk Behavior Survey collected in 2019.

TABLE 9: Prevalence estimates for ethnicity and BMI in the United States

<table>
<thead>
<tr>
<th>Table 9a. Ethnicity</th>
<th>US Census 2019, ages 10-17</th>
<th>IFPS Youth 2020, ages 10-17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>White only (and not Hispanic)</td>
<td>51.0</td>
<td>51.9</td>
</tr>
<tr>
<td>Black or African American only (and not Hispanic)</td>
<td>13.7</td>
<td>10.1</td>
</tr>
<tr>
<td>Other race only (and not Hispanic)</td>
<td>6.2</td>
<td>8.9</td>
</tr>
<tr>
<td>Two or more races, and/or Hispanic</td>
<td>29.1</td>
<td>28.8</td>
</tr>
<tr>
<td>Not stated</td>
<td>--</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 9b. BMI</th>
<th>YRBS 2019, grades 9-12 (ages 14-18) self-reported</th>
<th>IFPS Youth 2020, ages 10-17, self-reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Weighted %</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>31.6 *</td>
<td>40.0 of those with valid BMI (n=1,266)</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>32.0 of the entire sample, including those with missing/not stated BMI (n=1,582)</td>
</tr>
</tbody>
</table>

Estimates were weighted to represent the all students in grades 9-12 in each jurisdiction.
REFERENCES

